Voice transformation and speech synthesis for video games

Snorre Farner¹, Axel Roebel, Christophe Veaux¹, Gregory Beller¹, Xavier Rodet¹, and Laurent Ach²

¹ www.ircam.fr
² www.cantoche.com
Demo: Real-time transformation
Overview

- Introduction
- Advanced voice transformation
- Expressivity transformation
- Text-to-speech synthesis
- Avatar production
- Demo: speaking avatars
Introduction

- Application of speech in games:
 - narrators and NPCs in video games
 - players’ communication in multiplayer role-playing games
 - expressive voice in multimédia: the ANR-Vivos project

- Non-entertainment games:
 - educational games
 - e-learning
 - “serious games”
Current use of speech in games

- prerecorded speech (narrator, NPCs)
- player’s speech (VoIP)
- basic sound effects on the voice

Limitations:
- utterances must be predetermined
- recording of several actors may be necessary
Artistic research at IRCAM

Our objectives: artistic applications
- music, multimedia, films, dubbing, cartoon characters, etc.

Requirements:
- very high sound quality
- very high degree of naturalness
- automatic solution
- user control
Speech tools

- We present a set of tools to:
 - transform the voice of one actor into several different voices
 - design the voice of a playing character based on the player’s voice
 - modify speech to express emotions
 - produce arbitrary sentences by text-to-speech synthesis
 - create a visual avatar (Cantoche)
 - transform in real time
Library of voice transformation
“voiceTrans”

- Transformation of type:
 - sex, age, animal voice, fictional voice,

- Transformation of voice quality:
 - whispering, breathy, hoarse,
 - dark/bright, nasal, strong/weak,
 - relaxed/tense, creaky

- Transformation of speech style:
 - trembling, singing, stuttering,
 - lively, dull, eager, lazy, drunk,
The voice

- Pulsation of vocal folds
 ![Waveform](http://ocw.mit.edu)
 - time

- Turbulence in constrictions
 ![Waveform](http://ocw.mit.edu)
 - time

- Vocal tract resonance
 ![Waveform](http://ocw.mit.edu)
 - frequency

- Speech signal
 ![Waveform](http://ocw.mit.edu)

Fig: http://ocw.mit.edu
Signal transformation

- Modification of:
 - pitch
 - vocal tract
 - voiced contents
 - noise contents
 - glottal source

* Sound examples also available at http://recherche.ircam.fr/anasyn/farner/pub/GDC08
Transformation of sex and age

- Disguising man to woman:
 - ...also the voice: ♂ → ♀
 - Céladon ♂ → Alexie ♀
- One actor to 12 persons:
 - ♂ → ♀ 5th Blind (woman)
 - ♂ → ♀ Oldest Blind Woman
 - ♂ → ♀ Oldest Blind Man
 - ♂ → ♀ 3rd Blind (man)
- Monologue → dialog

« Deux Songes de Maeterlinck d'après Brueghel »
by J. B. Barrière, 2007
Other voice transformations

- original
- breathy
- whispering
- creaky (irregular vocal-fold movement)
- softer voice (glottal source)
- trembling
- dull and eager speech
- drunk
Text-to-speech synthesis

Construction of database:
- Recording of actor(s)
- Segmentation and classification

Text analysis
- ⇒ syntax ⇒ phone sequence

Prosody management (duration, intensity, pitch)
- from model ⇒ target prosody, or
- naturally by selection by phonologic position

Selection of speech units

Concatenation and possibly modification
Examples of synthesis

- “C’est un soldat(,) à cheveux gris”
- “Mon chien...”
- Monologue: ➤ dialog:
Training expressivity

- **Basic emotions:**
 - neutral
 - happiness
 - fear
 - sadness
 - anger

- **Introvert ↔ extrovert**

- **Different intensity levels**

- **Intentions and attitudes:**
 - surprise, disgust, discretion, excitation, confusion

- **Acoustic attributes:**
 - pitch
 - speech rate - duration
 - force - intensity
 - articulation degree
 - phonation - voice quality
Transformation of expressivity

- Construction of expressivity database
- Training of expressivity models
- Two complementary approaches:
 1. expressivity criterion in unit-selection stage
 2. transformation of synthetic or natural speech
 - analysis and segmentation of speech
 - transformation of prosody and timbre
Preliminary examples

<table>
<thead>
<tr>
<th>introvert</th>
<th>extrovert</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutral</td>
<td>happiness</td>
</tr>
<tr>
<td>fear</td>
<td></td>
</tr>
<tr>
<td>sadness</td>
<td></td>
</tr>
<tr>
<td>anger</td>
<td></td>
</tr>
<tr>
<td>negative surprise</td>
<td></td>
</tr>
</tbody>
</table>
Living Actor™ Avatars

- behavior depending on avatar personality
- gestures and expressions from voice analysis
- mixing avatar animations, audio and images data

Speaking Avatars
- emotion detection in voice
- multimodal correlations
- voice transformation
Living Actor™ – Creation
Demo:
Speaking Avatars

One actor → 4 characters